Expert-level program

Data Science Engineering Track

20-tygodniowy program zawodowy łączący data engineering i science. Platformy chmurowe, MLOps, deep learning i wdrażanie modeli w środowisku produkcyjnym.

20 tygodni
Expert training
12 projektów
Production-ready
6,799 PLN
Inwestycja
Aplikuj na program
Data Science Engineering Track - MLOps and Cloud Infrastructure

Najwyższy poziom expertise

Kompleksowy program dla doświadczonych data scientists, którzy chcą zostać engineering leaders i budować systemy ML w enterprise scale.

MLOps i deployment

CI/CD dla modeli ML, containerization, monitoring produkcyjnych systemów AI i automated retraining.

Cloud architecture

AWS/Azure dla data science, serverless ML, distributed computing i cost optimization w cloud.

Deep learning production

TensorFlow/PyTorch w skali, model optimization, edge deployment i real-time inference.

Filozofia full-stack data scientist

Program oparty na filozofii T-shaped professionals - głęboka ekspertyza w ML/AI z szeroką wiedzą o całym lifecycle produktów data-driven. Uczysz się myśleć jak tech lead, który rozumie zarówno business impact jak i technical constraints.

  • End-to-end ownership produktów ML
  • Cross-functional collaboration z engineers
  • Technical leadership i mentoring
  • Scalable systems design
  • Business value optimization
  • Portfolio ready for FAANG

20-tygodniowa transformacja

Intensywny program podzielony na 5 modułów - od data engineering fundamentals do production-grade ML systems

Faza 1

Data Engineering Fundamentals (Tygodnie 1-4)

Budowanie solidnych fundamentów w data engineering. ETL/ELT pipelines, data modeling, distributed systems i infrastructure as code. Przejście od data scientist do data engineering mindset.

Pipeline Engineering

  • • Apache Airflow orchestration
  • • Data quality monitoring
  • • Error handling i recovery
  • • Pipeline testing strategies

Cloud Infrastructure

  • • Terraform i Infrastructure as Code
  • • AWS/Azure data services
  • • Containerization z Docker
  • • Kubernetes basics

Data Architecture

  • • Data lake vs warehouse design
  • • Real-time vs batch processing
  • • Data governance i security
  • • Cost optimization strategies
Faza 2

MLOps i Model Lifecycle (Tygodnie 5-8)

Profesjonalne zarządzanie cyklem życia modeli ML. Od experimentów w notebooks do produkcyjnych systemów z CI/CD, monitoring i automated retraining.

Experiment Tracking

  • • MLflow i experiment management
  • • Model versioning strategies
  • • Hyperparameter optimization
  • • A/B testing dla ML

CI/CD for ML

  • • GitHub Actions i GitLab CI
  • • Automated testing ML pipelines
  • • Model validation frameworks
  • • Deployment automation

Production Monitoring

  • • Model drift detection
  • • Performance monitoring
  • • Alerting i incident response
  • • Business metrics tracking
Faza 3

Deep Learning w Production (Tygodnie 9-12)

Zaawansowane architektury deep learning, optimization dla production, distributed training i deployment na edge devices. TensorFlow/PyTorch w enterprise scale.

Advanced DL

  • • Transformers i attention mechanisms
  • • Computer vision w production
  • • NLP i language models
  • • Reinforcement learning basics

Model Optimization

  • • Model compression techniques
  • • Quantization i pruning
  • • ONNX i model conversion
  • • GPU optimization

Scalable Training

  • • Distributed training strategies
  • • Multi-GPU i multi-node
  • • Mixed precision training
  • • Cloud training platforms
Faza 4

Cloud-Native ML Systems (Tygodnie 13-16)

Serverless ML, microservices architectures, real-time inference systems i cost optimization. Budowanie systemów ML które skalują się automatycznie z traffic.

Serverless ML

  • • AWS Lambda i Azure Functions
  • • API Gateway i authentication
  • • Cold start optimization
  • • Event-driven architectures

Real-time Systems

  • • Streaming ML z Kafka
  • • Low-latency inference
  • • Edge deployment strategies
  • • WebRTC i real-time APIs

Cost & Security

  • • Resource optimization
  • • Auto-scaling strategies
  • • Security best practices
  • • Compliance i audit trails
Faza 5

Capstone Project i Career Transition (Tygodnie 17-20)

Realizacja end-to-end projektu z partnerską firmą. Od business problem definition do production deployment. Intensive career coaching i przygotowanie do senior roles.

Real Company Project

  • • Partnership z tech companies
  • • Real business problem solving
  • • Stakeholder management
  • • Production deployment

Leadership Skills

  • • Technical leadership
  • • Cross-functional collaboration
  • • Project management
  • • Mentoring junior members

Career Acceleration

  • • Senior role preparation
  • • Interview coaching
  • • Salary negotiation
  • • Industry networking

Rezultaty expert-level

Kompleksowa transformacja z data scientist na technical leader gotowego do najwyższych stanowisk w branży

Trajectory do tech leadership

Przed programem Senior Data Scientist
Po 6 miesiącach ML Engineering Lead
Po 12 miesiącach Principal Data Scientist
Po 18 miesiącach VP of Data/Head of AI
12
Production systems
150+
Godzin hands-on

Twoje ekspertyza po programie

Multi-cloud ML platform

Pełna architektura MLOps na AWS i Azure z automated deployment, monitoring i cost optimization

Terraform Kubernetes MLflow

Real-time computer vision system

Production-grade CV pipeline z edge deployment, <50ms latency i automatic scaling

PyTorch ONNX FastAPI

NLP recommendation engine

Distributed training, A/B testing framework i business impact measurement dla enterprise client

Transformers Spark Redis

Capstone: Company partnership

Kompleksowy projekt z tech company: od problem definition do deployment w production

End-to-end Leadership Impact

Dla expert-level professionals

Ten program jest dla doświadczonych data scientists gotowych na technical leadership i budowanie systemów ML w enterprise scale

Target profile

Senior Data Scientists

3+ lata commercial experience, portfolio ML projects, chcą przejść do ML engineering leadership

ML Engineers seeking advancement

Doświadczenie z production ML, chcą architectural expertise i tech leadership skills

Tech Leaders pivoting to AI

Software architects, tech leads z strong engineering background wchodzący w AI/ML space

Career objectives

FAANG/Big Tech transition

Principal/Staff Data Scientist roles w Google, Meta, Amazon, Microsoft, Apple

ML Engineering leadership

Head of ML, VP of Data Science, Chief AI Officer w tech companies i enterprises

AI startup founding

Technical co-founder skills: full-stack ML, product development, technical strategy

Prerequisites

Strong ML background

Production ML models, advanced Python/R, deep learning frameworks, statistical modeling

Software engineering skills

Git workflow, testing, code review, basic understanding of system architecture

Time commitment

20+ godzin tygodniowo, włączając weekendy. Program bardzo intensywny.

Admission process

Program ma bardzo wysokie wymagania wstępne. Acceptance rate ~30%. Portfolio review, technical interview i problem-solving assessment. Oczekujemy proven track record w ML i gotowość do intense learning.

Portfolio review Technical interview Problem-solving assessment

Cutting-edge tech stack

Najnowsze technologie używane w FAANG companies i top AI labs. Portfolio które imponuje tech recruiters na całym świecie.

Production-grade stack

Cloud Native

AWS/Azure/GCP, Kubernetes

MLOps Tools

MLflow, Kubeflow, Ray

Deep Learning

PyTorch, TensorFlow 2.0

Data Engineering

Spark, Kafka, Airflow

Advanced tech ecosystem

Docker Terraform FastAPI Redis PostgreSQL Prometheus Grafana ONNX

Leadership metodologia

1

Systems Thinking

End-to-end ownership: od business problem do production monitoring. Understanding całej architektury.

2

Technical Leadership

Mentoring, architectural decisions, cross-team collaboration. Skills beyond pure technical expertise.

3

Production Excellence

SLA/SLI, incident response, scalability planning. Enterprise-grade operational mindset.

4

Business Impact Focus

ROI measurement, stakeholder communication, strategic tech decisions aligned z business goals.

Unique program features

  • Real company partnerships for capstone
  • Industry mentors z FAANG background
  • Private cloud infrastructure dla praktyki
  • Alumni network w top tech companies

Exclusive program access

Limited cohort size (max 8 uczestników) i rigorous admission process. Premium investment w najwyższej klasy training.

Expert Track

6,799 PLN
Płatność jednorazowa
  • 20 tygodni expert-level programu
  • Cloud infrastructure access (AWS/Azure)
  • FAANG mentors (8 sesji 1-na-1)
  • Capstone z real company
  • 24 miesiące alumni support
  • Career transition coaching
Lifetime alumni network access

Enterprise

Custom pricing
Team upskilling
  • Team training (4-8 senior data scientists)
  • Customizacja do tech stack firmy
  • Capstone projects na company data
  • Architectural consulting
  • Ongoing technical support
  • ROI measurement i KPIs
Enterprise partnerships

Rigorous admission process

1

Application

Detailed background, portfolio link, career objectives, motivation letter

2

Portfolio Review

Deep technical review Twojego GitHub, production projects, code quality

3

Technical Interview

60-min system design, ML architecture, coding challenge z senior engineer

4

Final Decision

Admission committee review, notification w 48h, enrollment process

5

Onboarding

Infrastructure setup, mentor assignment, pre-program materials (2 tygodnie)

Inne ścieżki rozwoju

Sprawdź programy dla innych poziomów zaawansowania

Data Science Starter Pack

8-tygodniowe wprowadzenie do Python, pandas, NumPy i podstaw machine learning. Pierwszy krok w data science dla początkujących.

Advanced Analytics Program

14-tygodniowe kompleksowe szkolenie z modelowania statystycznego, R programming, SQL i enterprise analytics tools.

Dołącz do tech elite

Data Science Engineering Track to twoja droga do tech leadership w najlepszych firmach świata. Elite program dla ambitnych professionals.

🔥 Następna kohorta startuje 1 września 2025 • Pozostało tylko 3 miejsca (max 8 uczestników)